Tuesday, 28 January 2014

Food and Greenhouse Gases: Climate change, agricultural production and food demand.

Post written by C.Will

Our recent blogs have been discussing food security, and the role agricultural production has to play in ensuring a sustainable future. Below are two recently published papers that incorporate the effects of climate change into this discussion.

“Climate change effects on agriculture: Economic responses to biophysical shocks”. By Nelson et al. 2013. Published in Proceedings of the National Academy of Sciences (PNAS).

Abstract:
“Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.”

“The future of food demand: understanding differences in global economic models”. By Valin et al. 2013. Published in Agricultural Economics.

Abstract:
“Understanding the capacity of agricultural systems to feed the world population under climate change requires projecting future food demand. This article reviews demand modeling approaches from 10 global economic models participating in the Agricultural Model Intercomparison and Improvement Project (AgMIP). We compare food demand projections in 2050 for various regions and agricultural products under harmonized scenarios of socioeconomic development, climate change, and bioenergy expansion. In the reference scenario (SSP2), food demand increases by 59–98% between 2005 and 2050, slightly higher than the most recent FAO projection of 54% from 2005/2007. The range of results is large, in particular for animal calories (between 61% and 144%), caused by differences in demand systems specifications, and in income and price elasticities. The results are more sensitive to socioeconomic assumptions than to climate change or bio-energy scenarios. When considering a world with higher population and lower economic growth (SSP3), consumption per capita drops on average by 9% for crops and 18% for livestock. The maximum effect of climate change on calorie availability is −6% at the global level, and the effect of bio-fuel production on calorie availability is even smaller.”

No comments:

Post a Comment

Comments will be moderated by the author of the post. Bad language or personal attacks will not be published.